Skip to main content

Superb AI generates customized training data for machine learning projects

One of the big challenges of developing a machine learning project can be simply getting enough relevant data to train the algorithms. That’s where Superb AI, a member of the Y Combinator Winter 2019 class, can help. The startup helps companies create customized data sets to meet the requirements of any project, using AI to speed up the tagging process.

Hyun Kim, who is CEO and co-founder at the startup says one of the big stumbling blocks for companies trying to incorporate AI and machine learning into their applications is coming up with a set of suitable data to train the models. “Superb AI uses AI to make customized AI training data for large tech companies. Clients work with us to develop machine learning-based features in their products multiple times faster than they could themselves,” Kim told TechCrunch.

Kim and his co-founders CTO Jungkwon Lee, Machine Learning Engineers Jonghyuk Lee and Moonsu Cha and Hyundong Lee, head of APAC sales and operations (who is based in Seoul, South Korea) all were working in the field when they identified the data problem and decided to launch a company to solve it.

Traditionally, companies working on a machine learning project will hire human workers to tag data, but this has been expensive and error prone, assuming you even had the data to work with. Kim and his co-founders, who worked on AI projects and studied the subject in college, came up with the idea of putting AI to work on the tagging part of the problem.

“Instead of relying on slow and error-prone manual labor, Superb AI uses proprietary deep learning AI that assists humans to achieve up to 10x faster labeling of images and videos,” Kim explained. The company will also help find data sources for companies, who don’t have any data to begin with.

Kim says that they don’t take humans out of the process completely, but they do enhance tagging accuracy by combining human workers with artificial intelligence underpinnings. He says that this involves a couple of steps. First, it splits training data into as many components as possible in order automate each piece one at a time. If the data is too complex, and the AI tools can’t automate the tagging, they use a second approach called “human in the loop.” As humans label data, the AI can learn over time and eventually take over more and more of the process.

The co-founders decided to apply to Y Combinator to gain a foothold in Silicon Valley where they could expand their market beyond their native South Korea. “It’s definitely been a game changer. The amount of knowledge and experience we gained from the YC partners and fellow entrepreneurs is really unbelievable. And also the vast YC network helped us find our early customers in the Valley,” Kim said.

The company, which launched last October, is up to 13 employees including the co-founders. It has raised $300,000 in seed investment and has already generated the same amount in revenue from the product, according to Kim.



from Startups – TechCrunch https://ift.tt/2U3KbJj

Comments

Popular posts from this blog

Axeleo Capital raises $51 million fund

Axeleo Capital has raised a $51 million fund (€45 million). Axeleo first started with an accelerator focused on enterprise startups. The firm is now all grown up with an acceleration program and a full-fledged VC fund. The accelerator is now called Axeleo Scale , while the fund is called Axeleo Capital . And it’s important to mention both parts of the business as they work hand in hand. Axeleo picks up around 10 startups per year and help them reach the Series A stage. If they’re doing well over the 12 to 18 months of the program, Axeleo funds those startups using its VC fund. Limited partners behind the company’s first fund include Bpifrance through the French Tech Accélération program, the Auvergne-Rhône-Alpes region, Vinci Energies, Crédit Agricole, BNP Paribas, Caisse d’Épargne Rhône-Alpes as well as various business angels and family offices. The firm is also partnering with Hi Inov, the holding company of the Dentressangle family. Axeleo will take care of the early stage in...

TikTok’s rivals in India struggle to cash in on its ban

For years, India has served as the largest open battleground for Silicon Valley and Chinese firms searching for their next billion users. With more than 400 million WhatsApp users , India is already the largest market for the Facebook-owned service. The social juggernaut’s big blue app also reaches more than 300 million users in the country. Google is estimated to reach just as many users in India, with YouTube closely rivaling WhatsApp for the most popular smartphone app in the country. Several major giants from China, like Alibaba and Tencent (which a decade ago shut doors for most foreign firms), also count India as their largest overseas market. At its peak, Alibaba’s UC Web gave Google’s Chrome a run for its money. And then there is TikTok, which also identified India as its biggest market outside of China . Though the aggressive arrival of foreign firms in India helped accelerate the growth of the local ecosystem, their capital and expertise also created a level of competit...